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1.0 INTRODUCrION

1.1 Background

The Ship Fire Safety Engineering Methodology (.FSEM), developed by the USCG

and WPI, requires a submodel for the prediction of the time to full room involvement (FRI)

in compartment fires. In the application of the SFSEM to the Polar Icebreaker

Replacement design, attempts to use existing methods for predicting FRI time were

unsuccessful for compartments with highly conductive barriers and for forced ventilation

scenarios [1]. These difficulties were addressed theoretically in a subsequent analysis and

a method for FRI prediction was developed [2,3,4]. This method was validated only with

minimal forced ventilation data. Data were not available, however, for compartment fires

with conductive barriers for either natural or forced ventilation scenarios. Clearly, steel

barriers are of great importance for marine applications, and model validation for this

barrier type is essential. This validation can be achieved by comparing model predictions

with the results from a series of experiments.

1.2 Objectives

The main objective of these experiments was to provide experimental data to validate

the FRI time correlation for both forced and natural ventilation compartment fires with

conductive barriers. A post-test analysis of the data was performed to determine whether

the heat transfer coefficients developed in [2] needed to be changed in the SFSEM

submodel. Additional objectives were to investigate the robustness of the FRI time

correlation for different fire growth rate curves (i.e., examine different fuels) and to gain a

better understanding of forced ventilation compartment fires so that their behavior may be

more accurately modeled.



2.0 APPROACH

In order to achieve these goals, a steel-bounded compartment was constructed and

instrumented on board the Coast Guard Test Vessel MAYO LYKES for the purpose of

performing compartment fire experiments. Measurements included gas and bulkhead

surface temperatures, mass loss, heat fluxes, gas species concentrations, and air velocities.

3.0 EXPERIMENTAL SETUP

A portion of the third deck of the Test Vessel MAYO LYKES consisted of a

corridor, 37.6 m long, surrounded by 21 staterooms. One of these rooms was modified to

serve as the fire room and is labeled "2" in Figure 1.

3.1 Fire Room Construction

The fire room was approximately 3.4 m wide by 3.3 m deep by 3.05 m high. All

bulkheads, with the exception of the port bulkhead, were 12.7 mm steel with vertical

stiffeners. The port bulkhead was 15.9 mm thick. There were two door openings, measuring

0.9 m wide by 2 m high, in the bulkheads: one to serve as the exhaust vent and one to be

used to access the room before and after the test. The access door was located in the

horizontal center of the aft bulkhead. It remained closed during all tests. The second door

opening was centered horizontally in the starboard bulkhead and was modified to simulate

three separate exhaust vents. Section 4.2 details these modifications.

Two 30 cm by 30 cm viewing ports of 3 mm furnace glass were installed in the

bulkheads. The first port was located beside the opening in the starboard bulkhead, and the

second port was located in the aft bulkhead. The tests were videotaped through these ports.

2
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A fuel cradle, 2 m by 2 m, was suspended in the center of the compartment by a

cable extending through the upper deck (Figure 2). The cradle was constructed of a square

frame of 8 cm angle iron with supports inside the frame. It was suspended approximately

30 cm above the ground. A load cell was attached to the cable so the mass loss could be

monitored. A second hole was also located in the upper deck for the carbon dioxide

extinguishing system.

3.2 Ventilation

3.2.1 Natural Ventilation Tests

Three vent configurations were used in the natural ventilation test series. These vents

represented an open door, a quarter door, and an open window as illustrated in Figure 3.

The quarter door and window vents were simulated by using steel plates to cover the

appropriate portion of the doorway. The door vent was 0.9 m wide by 2 m high, the quarter

door vent was 0.225 m wide by 2 m high and the window vent was 0.9 m wide by 0.8 m high.

Both the door vent and quarter door vent were flush with the floor while the window vent

had a sill of 1.2 m.

3.2.2 Forced Ventilation Tests

Ventilation for these fires was supplied to the fire room via 30 cm diameter ductwork

which extended from a supply fan (Dayton Model 4C259). The supply duct discharged

through the upper deck of the Fire Room at a location 30 cm starboard of the port

bulkhead and 24 cm forward of the aft bulkhead (Figure 4). A 42 cm by 42 cm diffuser was

attached to the discharge hole to help disperse the air. In the ductwork, there was a damper

used to vary the air supply rate. Exhaust products exited through a vent created by covering

a portion of the doorway with a steel cover as in Series 1. This vent opening was 28 cm by

28 cm, flush with the deck (Figure 5).

4
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3.3 Instrumentation

3.3.1 Air Flow Rate Measurements

Bi-directional probes were used to measure the air velocity in the exhaust vent in all

tests and in the supply duct in the forced ventilation tests. Probes were spaced 15 cm apart

vertically on the centerline of the vent with a total of 13 probes in the full and quarter door

vent experiments and 5 probes in the window vent experiments (Figure 6). In the forced

ventilation experiments, there was one probe located in the middle of the exhaust vent.

3.3.2 Temperature Measurements

3.3.2.1 Gas Temperatures

Three thermocouple trees were used to measure gas temperatures. Two of these

trees were located in comers of the fire room and consisted of 10 branches spaced 30 cm

apart (Figures 6 and 7). These thermocouples were 20 gage, Type K with high temperature

CEFIR insulation. The third tree accompanied the bidirectional probes in the vent and were

necessary for calculation of the density. Vent tree thermocouples were Type K, 3.2 mm

Inconel sheathed.

3.3.2.2 Surface Thermocouples

Thermocouples were welded to the upper deck and to the bulkheads at three heights

to measure barrier temperatures. These thermocouples were also 20 gage, Type K with

CEFIR insulation and were attached as shown in Figure 8. Figures 6 and 7 show the

locations of these measurements.
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3.3.3 Incident Heat Flux Measurements

Pairs of Medtherm radiometers and calorimeters were located in the floor, bulkhead

and upper deck. All transducers had a range of 0-50 kW/m'. Specific transducer locations

can be found in Figure 7.

3.3.4 Gas Species Measurements

A vertical tree consisting of 7 branches was used for gas analysis (Figure 9).

Branches were spaced 41 cm apart beginning 36 cm from the ceiling. Oxygen concentration

was measured at each location. The second branch, 77 cm from the ceiling, was also

instrumented to measure carbon monoxide, carbon dioxide, and unburned hydrocarbons.

In addition to oxygen, the lowest branch measured carbon monoxide and carbon dioxide.

A gas sampling tube was located in the exhaust vent. In Series 1 tests, it was

positioned near the top of the vent so that it was in the exhaust portion of the flow field.

The probe was placed in the center of the exhaust vent for Series 2 tests. Measurements

consisted of 0, CO, CO,, and unburned hydrocarbons (UHC).

Water was removed from all gas samples by passing them through Drierite filters.

Thus, all recorded concentrations were "dry" concentrations.

3.3.5 Fuel Mass Loss Measurements

A 0-200 kg load cell with a resolution of 0.1 kg was useu to record the mass loss. As

shown in Figure 2, it was attached to the cable which supported the fuel cradle. The cradle

weighed 72 kg.

13
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3.3.6 Pressure Measurements

A 0-250 Pa pressure transducer was located in the floor of the compartment between

the fuel cradle and the vent (Figure 7). This pressure measurement was used as one means

of determining the neutral plane location.

3.3.7 Video Cameras

Each test was videotaped from three locations. Two of these views were through the

portholes and recorded the fire development. In most tests, vision through the portholes

was quickly obscured by soot. The third camera was located in the corridor so that it

monitored the air flow through the vent.

4.0 TEST PROCEDURES

4.1 Test Description

Tests were divided into two series, each consisting of 12 tests. Series 1 tests used

natural ventilation while Series 2 tests used forced ventilation. Within each series, three

different vent sizes or ventilation rates were examined in conjunction with four fuel

configurations. Fuel types included diesel pans, wood cribs, and polyurethane slabs. Two

pan diameters, 84 cm and 62 cm, were used for the diesel pan fires. All wood cribs were

1.9 by 1.9 m and consisted of 6 layers of 28 3.8 cm members spaced 3.1 cm apart.

Polyurethane slabs measuring 1.8 m by 1.8 m by 0.15 m were burned in the last fuel

configuration. Tables I and 2 provide the test sequence with a brief test description.

15



Table 1. Series 1: Natural Ventilation Tests

62 cm Pan 84 cm Pan Wood Crib, PU, Growing
Ventilation Steady Fire Steady Fire Growing Fire Fire

Full Door 1 2 3 4

Window 5 7 6 8

Quarter Door 11 12 10 9

Table 2. Series 2: Forced Ventilation Tests

62 cm Pan 84 cm Pan Wood Crib, PU, Growing
Ventilation Steady Fire Steady Fire Growing Fire Fire

0.38 m3/sec 1 3 2 4

0.61 m3/sec 7 8 6 5

0.25 mn/sec 10 11 9 12

Ignition was initiated in the diesel pan fires by pouring 350 ml of gasoline on top of

the diesel fuel. The wood cribs were ignited by placing a 0.305 m square pan underneath

the crib. This pan was filled with diesel fuel 1 cm deep and a thin layer of gasoline on the

top. This arrangement was used to ensure that the crib was burning before the initiator had

burned out. Polyurethane slabs were ignited by soaking a rag approximately 0.305 m by

0.305 m in gasoline and laying it in the center of the slab. The goal in the wood crib and

polyurethane fires was to ignite the fuel so that the flame would spread radially from the

center in a uniform manner. It is believed that with each ignition technique, the ignition

source disappeared early in the transient portion of the test, before steady-state conditions

were achieved.

16



4.2 Additional Tests

The tests described above were designed to span an upper layer temperature increase

between 0 and 600 °C though a temperature of 600 °C was not reached in any of the tests.

In an effort to achieve higher upper layer temperatures, three additional tests were

conducted following Series 1 and 2 tests and were named ADD1, ADD2, and ADD3. These

tests were naturally ventilated and used the full door vent. In each test, the fuel load

consisted of three pans having dimensions of 62 cm diameter, 84 cm diameter, and 46 cm

by 92 cm. Each pan was filled with a layer of diesel fuel 1.9 cm deep. As with the other

diesel pan fires, gasoline was used as an initiator. 700 ml of gasoline was divided between

the three pans prior to ignition.

These three tests differed by the remote ventilation configuration. ADD1 was

conducted with the door at the top of the stairtower open, as was the case in most of the

other tests. The second test, ADD2, was conducted with the door at the top of the

stairtower and the door at the end of the passageway closed. The last test, ADD3, was

performed with these doors open with an addition of an open window. Specifically, this

window was located in the skin of the ship in the room adjacent to the fire room (Room 4

in Figure 1). Also, in this test, the smoke extraction fan was used with only two of the four

vents open. The two vents closest to the fire room remained closed since high temperature

air could damage the extraction fan. These additional ventilation measures were used in

ADD3 to assess the effect that variable ship ventilation outside the fire compartment may

have on fire compartment behavior.

5.0 DATA ANALYSIS METHODS

Experimental data were reduced to determine mass loss rates, supply and exhaust air

flow rates, hot and cold layer temperatures and depths, wet gas concentrations, and heat

release rates. In order to perform some of these calculations, molecular formulas of the fuel

and their heats of combustion had to be estimated. Table 3 lists the values used [5,6,7,8].
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It should be noted that values used for wood reflect the composition of the volatiles burning

during the flaming stage of the fire.

Table 3. Fuel Properties

Fuel Type Molecular Formula Heat of
Combustion

(kJ/g)

Diesel C1oH1g 45

Wood (Fir) CH3wO,5 13

Polyurethane CI- 7H• 4Os3N 26

Mass loss rates were calculated using a one minute running average of the mass loss divided

by the time elapsed.

Air velocities (m/s) were calculated using Bernoulli's equation:

V(z) = 2Ap(z)
Spd(z)

where C is the flow coefficient which was taken as 1.08 [9], Ap(z) is the pressure difference

across the bi-directional probe (Pa), and Pd is the density of the gases in the doorway

(kg/M3). Then, the exhaust and supply flow rates were determined by integrating the air

velocity profile in the doorway [10].

Zd

Ma -C.Wd f p(z)' Vz)dz' (2)

Z3

,,. c f p,,z')V(z),' (3)
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C, and q are the out and in flow coefficients, respectively, and were taken to be 0.73 and

0.68 [11], w, is the width of the vent, zd and z, are the location of the top and bottom of the

vent (m), respectively, and z, is the height of the neutral plane (m). The neutral plane is

the location where there is no pressure change across the vent. This location was

determined by finding the height where the pressure differential readings changed signs.

This value was verified with two other methods. The first method was to find the location

where the temperature gradient in the vent tree was the highest. The other method used

the pressure reading at the floor and the temperature profile in the compartment [10].

Generally, the values determined with these methods were within 15 cm of each other, which

is the distance between bi-directional probes.

Hot and cold layer temperatures were calculated differently for natural and forced

ventilation tests. Natural ventilation tests produced two-layer systems which allowed for a

determination of the layer interface. The layer interface was taken as the point where the

temperature gradient was highest. Temperatures from both thermocouple trees above this

point were averaged for the hot layer temperature and below this point for the cold layer

temperature. In general, forced ventilation tests did not produce two-layer systems. The

upper layer temperature was calculated both by averaging the temperatures over the entire

compartment height and by averaging the temperatures over the top half of the

compartment. These values did not differ by more than 30 °C in smaller fires and 45 0C in

larger fires. The value determined by averaging over the entire compartment will be

reported here and compared to the predictive methods.

It should be noted that other common methods of layer interface determination were

implemented for Series 1 tests and found to yield unrealistic results. These methods

included the Cold Layer Temperature Method, the Hot Layer Temperature Method, and

the Layer Interface Method [4]. In each method, there are two equations and three

unknowns: the upper and lower layer temperatures and the interface height. A different

variable is assumed in each method so that the equations can be solved. In most cases, each

method gave results which were questionable. As an example, the interface location would

be at a point which was in the middle of the upper or lower layer based on the temperature
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profiles. These methods may not have been successful since the difference between the

upper and lower layer temperatures was small.

Overhead temperatures were averaged over the four locations for the interior side

of the barrier. One of the exterior measurements was faulty so that the exterior value was

only averaged over three locations. In the same manner, the interior and exterior bulkhead

temperature was determined by averaging the values at the highest position on the forward

and aft bulkheads.

Since water was trapped out of the gas samples before the concentration was

determined, the gas concentration measurements were corrected to represent "wet

concentrations." The water concentration was estimated by assuming that the ratio of water

to carbon dioxide production remained the same as the stoichiometric ratio. This

assumption is good in situations where carbon monoxide concentrations are minimal as is

the case in most of these tests. This correction is typically performed for analyses involving

gas species yields. Data from these tests were used to calculate gas species yields, but the

results were not presented due to measurement problems which are discussed in Section

6.1.1. The wet oxygen concentration is not reduced by more than 10% from the dry oxygen

concentration in these tests.

The response time of each analyzer was measured and then used to adjust the
readings so that the delay in response was removed from the results. These delay times

ranged from 24 to 138 seconds.

Heat release rate calculations were performed by multiplying the mass loss rate and

the heat of combustion. This method may overestimate the heat release rate because it

assumes that all fuel is burned to completion (i.e., all exhaust products are water and carbon

dioxide). Heat release rates based on oxygen depletion were attempted [12], but

uncertainties in transient concentration measurements reduced the confidence in these

results. However, these heat release rates calculated during steady periods were used to

verify the heats of combustion in Table 3.
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6.0 RESULTS

6.1 Series 1 Tests: Natural-Ventilation Fires

6.1.1 Overview

The measured air flow rates remained relatively constant during the fires and did not

fluctuate considerably from test to test for a given vent size. The measured inflow and

outflow rates were not consistent with one another in all cases. Since they should differ only

by the fuel mass loss rate, the inflow and outflow were averaged and used in subsequent

calculations. As expected, their values were less than the maximum air flow rate based on

choked flow [13]. For the door vent, the average air flow rate was 0.9 kg/sec compared to
a choked flow rate of 1.27 kg/sec. The window and quarter door vents both had an average

flow rate of 0.28 kg/sec. The maximum choked flow rate is 0.32 kg/sec for each of these

vents.

Although gas concentrations were adjusted for the sampling system transport times,

they did not correspond properly to the mass loss rate and temperature time histories in the

diesel and polyurethane fires. Figure 10 shows upper layer temperature, mass loss rate,

carbon dioxide concentration, and oxygen concentration-time histories for test S112, an 84

cm diameter diesel pan fire. The oxygen concentration reflects the measurement at the top

of the gas sampling tree and the carbon dioxide concentration reflects the measurement at

the second tree branch. Both graphs have been corrected for the transport time. An arrow

has been placed on each graph indicating the point where it appears steady-state conditions
have been achieved based on that particular measurement. As shown in this figure, there

were some tests where as much as a two-minute time shift was present between the rise in

mass loss rate and temperature and the depletion in oxygen concentration and rise in carbon

dioxide concentration even after correction for sample transport delays. This discrepancy

made analysis which involved both mass loss rate and gas species measurements (i.e., CO

yield, heat release rate based on oxygen depletion, etc.) unreliable. The magnitude of the
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transient measurement problems varied from test to test and sample line to sample line. No

source of the problem was identified.

The oxygen measurements on Branch 2 were usually lower than those on the other

branches. One would be expect that the concentration on Branch 1 would be the lowest

since it is the highest sampling point in the compartment. Nonetheless, due to the fact that

this reading showed 4% less oxygen than on the other branches, well out of the experimental

error limits, it was plotted but not used in calculations. It was also disregarded when

determining the minimum oxygen concentrations in each test since no explanation could be

offered for the behavior. Since the gas concentrations measured in the vent exhaust were

also not usable due to measurement problems, exhaust oxygen concentrations were assumed

to be the same as those recorded on Branch 1 of the gas sampling tree.

Vertical temperature and oxygen profiles plotted at steady-state conditions showed

that most of these fires produced environments which were contaminated, two-layer systems.

Some tests were well-mixed based on the oxygen concentrations but showed some thermal

stratification. Only two of the Series 1 tests had ambient oxygen concentrations at the base.

These tests were the diesel pan full door vent tests.

A summary of results is provided in Table 4 where rh, represents the mass loss rate,

O1, represents the theoretical heat release rate, TH and T, represent the hot and cold layer

temperatures, respectively, Toll and TB8 ,, represent the upper deck and bulkhead

temperatures, respectively, and 0, represents the lowest oxygen concentration recorded on

the gas sampling tree during the test (discounting Branch 2). These values were taken as

the average over the steady-state portion of the test with the exception of polyurethane tests

where values were taken at the initial peak. Barrier temperatures were taken as the

maximum temperature achieved during the test.

Trends in fire behavior were not necessarily consistent between fuels. Therefore,

further results are described below for each fuel type. Plots of the time histories for mass
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loss rate, temperature profiles, average hot and cold layer temperatures, wet gas

concentrations, and heat release rates are included in Appendix A. Since the additional tests

performed (ADD1, ADD2, and ADD3) were also natural ventilation tests, they will be

presented in this section. In cases where it was determined that particular measurements

were bad, they were not plotted.

6.1.2 Diesel Pan Fires

6.12-1 62 cm Diameter Pan (S101, S105, Sill)

These fires had a relatively steady mass loss rate and temperature-time history. A

typical mass loss rate-time history is shown in Figure 11. Discretization in mass loss rate

values resulted from poor load cell resolution.

Figures 12 and 13 provide a comparison of the mass loss rate, upper layer

temperature, and minimum oxygen concentration as a function of the ventilation rate. From

Figure 12, there appears to be no direct relationship between the ventilation rate and the

mass loss rate. The window vent had the highest mass loss rate while the quarter door vent

had the lowest rate. Figure 12 also demonstrates that the upper layer temperature in the

door vent test is lower than with the other two vents as expected for an overventilated fire.

The larger vent allowed air to flow through the compartment and remove heat without

participating in combustion. The increasing oxygen concentrations further show that the air

supply is excessive (Fig. 13).

Vertical oxygen and temperature profiles for each test recorded at steady-state

conditions can be found in Figures 14-16. The temperatures plotted reflect an average of

the two thermocouple trees. Two-layer characteristics are most prominent in the full door

vent test (S101). It is interesting to note that this test is one of the two Series I tests where

an ambient oxygen concentration was recorded at the fire base. The quarter door vent test

shows more stratification than the window vent tests indicating that more mixing is occurring

with the window vent.
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6.1.2.2 84 cm Diameter Pan ($102, $107, S112)

As with the 62 cm pan fires, the mass loss rate and temperature-time histories for

these tests were quite steady. From Figure 17, the mass loss rate increases with the

ventilation rate. However, when comparing the temperatures, the ventilation does not seem

to affect the values. This trend suggests that the added ventilation is removing enough heat

to compensate for the higher heat release rate. In Figure 18, the minimum oxygen

concentration increases with the ventilation rate. The quarter door vent test has a

concentration 3% lower than the window vent test.

The vertical oxygen and temperature profiles for the door vent test indicate a two-

layer system (Figure 19). The other tests show some two-layer qualities (Figures 20-21).

These qualities are less evident in the window vent test where well-mixed, one layer

characteristics are beginning to be favored.

6.1.3 Wood Crib Fires (S103, S106, SI10)

These fires were very slow growing. At the beginning of the test, the flame spread

slowly from the center. Burning occurred in a localized area and the entire crib was never

involved. In each test, the compartment temperatures were still rising after 1000 seconds.

The latter two tests, S106 and S110, were terminated before all fuel was consumed due to

the test length.

In both tests S106 and Sl10, a distinctive peak in mass loss rate and gas species

concentrations occurs near 1000 seconds. An example of this behavior is shown in Figure

22 which represents test S1 10, the quarter door vent test. After this time, the mass loss rate

decreases and levels off while the oxygen concentrations rise and also level off. This drop

in oxygen concentration is particularly interesting in the quarter door vent test where it

reaches a low of 1.5% in the upper layer before it begins to rise. At this time, a carbon

monoxide concentration of 3% was measured. This is the only time during all tests that the
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fire appears to have been oxygen starved. This behavior could be indicative of wood's

tendency to be self-regulating. The fire will grow to a point where it cannot sustain itself

and then choke back to conditions where it can be sustained.

Figure 23 shows a dramatic increase in mass loss rate with ventilation rate as well as

a significant increase in temperature. A notable increase in the minimum oxygen

concentration is observed between the quarter and full door vent tests in Figure 24.

However, the increase is much smaller between the window and full door vent tests.

Figures 25-27 show the vertical oxygen and temperature profiles for these tests.

These profiles represent a time in the fire where the oxygen concentrations are steady.

Therefore, the low concentrations shown in Figure 24 are not reflected in the profiles. Each

test has two-layer characteristics both thermally and chemically; however, the window vent

test presents the scenario closest to a one-layer, well-mixed system. The largest amount of

oxygen stratification occurs in the quarter door vent test while the largest amount in

temperature occurs in the full door vent test.

6.1.4 Polyurethane Fires (S104, S108, S1099

These fires are characterized by an initial peak in temperature and heat release rate.

Referring to Figure 28 which represents test S106, this peak occurs in the first 200 seconds

of the fire after which the mass loss rate remains at a low, steady value. Once ignition

occurred, the entire slab was involved before this peak in mass loss rate. It appeared as

though the fire grew to such magnitude that it had to choke itself back to avoid extinction.

In Figure 29, it is demonstrated that the mass loss rate increases with ventilation rate

while the temperature decreases. An increase in mass loss rate is expected for increasing

ventilation rate since there is more air available for combustion. However, it would also be

expected that the temperature would increase with ventilation rate since the heat release

rate is increasing with vent size. Figure 30 shows an increase in oxygen concentration with
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ventilation rate. The lowest mass loss rate and highest temperature occurred with the

window vent test.

Figures 31-33 show vertical oxygen and temperature profiles which represent the time

where the mass loss rate and temperature peaked. The most striking characteristic of these

plots is the oxygen concentration at 2.3 m. In each test, this concentration is at least 4%

lower than on any other branch. No explanation can be offered for this behavior. The

calibration of the analyzer was checked, and there was no justification for disqualifying these

measurements. Ignoring these points, stratification in oxygen concentration is seen between

the lowest and second lowest branch. This separation is the most pronounced in Figure 33

(quarter door vent) where the oxygen concentration increases from 13% to 19% at the base.

The window vent test appears to be the most well-mixed while the cleanest layer division

occurred in the quarter door vent test.

Temperature profiles all show a similar shape which favors a two layer system. Each

test exhibits an upper layer which is nearly uniform thermally. At a height near 1 m above

the floor, this uniform profile changes as it begins to gradually decrease in a linear fashion

to the floor. This flat slope probably occurs because the temperature rise period is too short

for the entire compartment to be heated.

6.1.5 Additional Tests - Diesel Pan Fires (ADD1. ADD2, ADD3)

As explained previously, the purpose of these tests was to generate upper layer

temperatures closer to 600 'C since there was a lack of data in this area. This effort was

unsuccessful as the highest temperature was 440 'C.

Air flow rates in these tests were higher than those measured in previous door vent

tests. An average value of 1.25 kg/sec was measured compared to 0.9 kg/sec which was

measured in earlier tests. This value did not change significantly for the three tests where

the remote ventilation (i.e. corridor door, stairtower door, etc.) was changed suggesting that

it was not a large factor.
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The mass loss rate, minimum oxygen concentration, and upper layer temperature

were very similar between tests. The temperature was slightly higher, and the minimum

oxygen concentration was slightly lower in ADD2 which may be attributed to closing off the

remote ventilation.

Vertical oxygen and temperature profiles are nearly identical for each test (Figures

34-36). Each test shows some thermal stratification and a gradient in oxygen concentration

near the fire base.

6.2 Series 2 Tests - Forced Ventilation Fires

6.2.1 Overview

In general, these fires produced environments which showed no clear thermal

interface. In addition, the tests appeared well-mixed from a gas species standpoint.

Air flow measurements showed significant differences in the supply and exhaust rate

during testing. Prior to testing, air velocities were recorded at each damper position using

a hot wire anemometer. The supply rates agreed more closely with these values so the

exhaust rate measurements were not used in the analysis.

A summary of these tests is provided in Table 5. The values listed are the same as

those in Table 4 except the cold layer temperature is not listed since there was only one

thermal layer. Appendix B includes the time histories which summarize these tests.

52



3.0

v
2.5

E

02.0

E21.5 v

CD, 8v
S1.0

a 0.5

v0 I ,I I , , , I , , , ,

20 15 10 5

Oxygen Concentration

3.0 , , , , i , , , ,i' ,

2.5 vE

0 2.0 -

E V
2 1.5 -

C.,
r- 1.0- v

0.5

0 100 200 300 400 500 600

Temperature (C)

Figure 34. Vertical Oxygen Concentration and Temperature Profiles for ADD1

53



3.0 I .

,. 2.5
E• ....

8 2.00

E2 1.5 •

c1.0

0.5

0 v I I I t i I

20 15 10 5

Oxygen Concentration

3.0

2.5 VE

0 2.0

E V0 1.56,--

C,-.

C 1.0-- V

i50.5

0 " , I 'T , , I I , , , I I, , , , I , , , , I , , ,

0 100 200 300 400 500 600

Temperature (C)

Figure 35. Vertical Oxygen Concentration and Temperature Profiles for ADD2

54



3.0

.-. 2.5

0 2.0

E
521.5 'v

(D
~10 vo 1.0

Ov

0.5 •
v

0 - I I I I I II I I I I I I I I

20 15 10 5

Oxygen Concentration

2.5 -v
EV

082.0

0 v

E vo 1.5 1
v

C 1.0 ' v

0.5 v
20

0 100 200 300 400 500 60l

Temperature (C)

Figure 36. Vertical Oxygen Concentration and Temperature Profiles for ADD3

55



0

0 tn

en C'4 eq k00

oq r- $-LV -

00 C

en,* Cn-. u

Cu~c V- &A. - - - -

23

2 -~ oo o56



6.2.2 Diesel Pan Fires

6.2.2.1 62 cm Diameter Pan (S201, S207, S210)

From Figures 37 and 38, it is seen that the mass loss rate and the minimum oxygen

concentration increase with increasing ventilation rate. The upper layer temperatures seem

to be unaffected by the ventilation rate suggesting that the added ventilation is cooling the

compartment, so no net temperature rise is measured.

Examination of the vertical temperature and oxygen profiles in Figures 39-41 suggests

that the environments were well-mixed and one-layer. This linearity is most clear with the

highest ventilation rate test (S207).

6.2.2.2 84 cm Diameter Pan (S203, S208, S211)

The same trends with the mass loss rate, minimum oxygen concentration, and upper

layer temperature are apparent in these tests as for the 62 cm diameter pan tests. The mass

loss rate and minimum oxygen concentration increase with ventilation rate while the

temperature is not affected (Figures 42-43). In Figures 4A-46, there is no clear interface

seen in the temperature profiles. The oxygen concentrations, however, increase as they get

closer to the floor until a height of 0.6 m where they level off. This behavior suggests that

a small amount of stratification is present.

6.2.3 Wood Crib Fires (S202, S206, S209)

It is clear from Figure 47 that the mass loss rate and upper layer temperature are

affected considerably by the ventilation rate. Despite the added ventilation, though, the

minimum oxygen concentration decreases (Figure 48).
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Oxygen concentration profiles shown in Figures 49-51 show environments which are

well-mixed (within 2%). For an unknown reason, a decrease in oxygen concentration is

noticed near the fire base. The temperature profile for the highest ventilation rate test

appears linear (Figure 50) while the profiles for the other two tests show a gradient change

near 1.5 m (Figures 49 and 51).

6.2.4 Polyurethane Fires (S204, S205, S212)

From Figures 52 and 53, it is concluded that the mass loss rate is the only quantity

directly affected by the ventilation rate. The temperatures and oxygen concentrations do not

follow a clear trend.

Tl1 e vertical oxygen profiles are nearly well-mixed as seen in Figures 54-56. The

temperature profiles show more stratification than was present with the other fuels. A

nearly uniform upper region is seen with a gradual decline in temperature near the fire base.

As mentioned in Section 6.1.4, this effect could be a result of the quick peak in temperature

which is not reflected low in the compartment.

7.0 DISCUSSION

7.1 Temperature Predictions

Experimental results were compared to temperatures predicted using measured vent

flow rates. However, since the vent flow rates are often not known, two methods of

predicting the vent flow rate were used and compared with the measured values. Also, the

MQH method was examined using an overall heat transfer coefficient calculated using

Beyler's equation.
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7.1.1 Peatross/Beyler Method

A correlation for temperature rise was developed by Deal and Beyler based on an

energy balance across the compartment [4].

AT = 0 (4)
Wkc. + hkAt

where 0 is the heat release rate (W), rih is the compartment exhaust rate (kg/sec), c, is the

heat capacity of the exhaust gases (J/kgK), A, is the barrier surface area (mi), and h, is the

overall heat transfer coefficient (W/mZK). The barrier surface area is taken as the interior

surface area of the compartment, including the floor.

The challenge with this expression lies in the determination of the heat transfer

coefficient. Assuming that the compartment temperature is uniform at T, and using a

lumped mass analysis to look at the barrier, the energy equation becomes

M = h(Th - 7) -h.(T- T.) (5)
'dt

where T is the barrier temperature, T, is the temperature of the hot gas layer, T. is the

ambient temperature, m" is the mass per unit area of the barrier, cp is the barrier's specific

heat, and hb and h. are the heat transfer coefficients on the hot and ambient sides of the

barrier, respectively. Using an ambient temperature of zero and the initial conditions of

T = 0 at t = 0, the following expression results

T= hk Th (1 ern' hk toj (6)
hA + ho o m"c,))

The overall heat transfer coefficient, h, may be expressed by

411 = hh(Th- 7) = hk(TA- T) (7)
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so that solving for h, yields

hk = h•- _h - exp ,(,h ) (8)ht h h + ho P * C

Looking at the behavior of this equation, it is found that

hk = hh at t = 0 (9)

ht hhho
=k hhho att = (10)hA + ho

Since time is a variable used to calculate the overall heat transfer coefficient, the FRI time

may be determined by looking at the time which corresponds to a AT of 500 to 600 *C.

Based on a simple analysis, Beyler estimated values of h, and h. as 91 W/m2K and 45

W/m2K, respectively [2]. These values result in an overall heat transfer coefficient which

begins at 91 and is lowered to 30 W/mWK as time reaches infinity.

Preliminary comparisons of the experimental results with this correlation indicated

that Beyler's proposed heat transfer coefficients, h, and h., were too large. As a result, too

much heat was lost through the walls so that temperatures were underpredicted. In both

natural and forced ventilation tests, the most suitable values for hb and h. were 30 and 20

W/m'K, respectively. Therefore, the current heat transfer coefficients used in the SFSEM

submodel are inappropriate for predicting temperature rise in compartment fires with highly

conductive barriers and these new coefficients should be used.

Figures 57 and 58 show plots of the actual and predicted temperature-time histories

and of the predicted temperature versus the actual temperature for Tests S104 and S106

respectively. Figure 57, which represents a polyurethane fire, shows excellent prediction of

80



400 I

13 = Peatross/Beyler
0 = Actual

S300 -

cc o

E *
200 -,

(D

100 -

CL

0
0 100 200 300 400 500 600

Time (seconds)

300 - 00

CDc °3
_D 200 -

CL
E
1-

.100
"C)
I1.. o

0
0 100 200 300

Actual Temperature (C)

Figure 57. Temperature Prediction Results Using Peatross/Beyler Method for S104

81



500 d I ~ o 0

0 EP 0190

~400p1 3C 3C

EL 300 -C
E0
F-0

S200
CUo = Peatross/Beyler
CD 9*= Actual

Ca. 100

0~

0 1000 2000 3000 4000 5000

Time (seconds)

01 500 09
a)

I-0

ca 400
I.-

CD)
0-
E 300
a)

.~200

a)

0
0 100 200 300 400 500 600

Actual Temperature (C)

Figure 58. Temperature Prediction Results Using Peatross/Beyler Method for S106

82



the temperature peak. Figure 58 corresponds to a wood fire and shows poorer agreement

than Figure 57 with a tendency to overpredict the temperature. Plots of this format are

included in Appendix C for all natural ventilation tests.

Figure 59 displays the upper layer temperature prediction results from all Series 1

tests. In order to obtain the data points, four points were taken from each test during the

growth and steady-state period. Summary plots for other methods use this same procedure

to obtain points to plot. In situations where the predictions were noisy, care was taken to

pick average temperature values. Agreement is excellent. The average difference between

the predicted and actual values used in this graph was calculated as 18 *C.

Forced ventilation fire temperatures were predicted less reliably. A plot summarizing

the forced ventilation tests is shown in Figure 60. The mean difference between the

experimental and predicted results was 30 'C, almost twice that of the natural ventilation

results. Individual test results from this analysis can be found in Appendix D.

It is important to identify the sources of error in these predictions. To begin with,

some of the tests have predictions which reflect a lot of noise. This is primarily due to noisy

mass loss measurements since this measurement is used to determine the heat release rate.

This noise is notably worse for wood crib fires as is shown in Figure 61. Another source of

error in this analysis lies in the estimation of the heat of combustion for each fuel. Since the

theoretical heat release rate was used in the calculations, an overestimation of the heat of

combustion could lead to overprediction of the temperatures.

7.1.1.1 Deal/Beyler Layer Driven Method for Determining Vent Flow Rates

When the vent flow rate is not known, vent flow dynamics and plume entrainment

may be used to estimate the flow rate. This approach assumes that the entrained air flow

rate is equal to the exhaust flow rate. Since plume entrainment is a complex probiem,

several models have been developed. This report discusses two of these models.
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Rockett expressed the vent flow rate for a 2 layer compartment fire as

m/ow = L2-gCDp..,Aov/o T1- T 1] N) (21

- 3 Dvey Th[ i I

where CD is the discharge coefficient (0.68), p. is the ambient density (1.2 kg/m3), A& is the

vent area, H. is the vent height, T. is the ambient temperature, Tb is the hot layer

temperature, and N is the height of the neutral plane above the base of the vent normalized

by the height of the vent [14].

Deal and Beyler's Layer Driven Method uses Zukowski's correlation for plume

entrainment [15]. A comparison of this method with experimental results was performed

using equations 25-27 in reference [4]. As seen in Figure 62, this method underpredicts the

vent flow rate. A complete set of results can be found in Appendix E. In some tests, the

predicted values are underpredicted by as much as 33%. However, since the temperature

correlation equation is relatively insensitive to the exhaust rate, the predictions were not

shifted significantly from those using the measured vent flow rate. Figure 63 presents a

comparison of this model with the experimental results. The mean difference in the

predictions and the actual values was 54 *C.

7.1.1.2 Mowrer Method for Determining Vent Flow Rates

Mowrer's Method employs Heskestad's correlation for fire plume entrainment,

neglecting the virtual origin offset [16]. Mowrer determined that the correlation was better

when this offset was ignored. This correlation differs from Zukowski's in that it is for

entrainment at the fire base instead of along the flame height.

Vent flow rates were calculated using simplifications and assumptions detailed by

Mowrer's equations 15, 21, and 23 [17]. In contrast to the Deal/Beyler Layer Driven

Method, exhaust flow rates were overpredicted. Due to the small area of the window and

quarter doo, vents, the predicted exhaust flow rate for these tests was based on the

ventilation factor. Results for these tests are in Appendix F.
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As was the case with the Deal/Beyler Layer Driven Model, the inaccuracies in the

vent flow prediction did not affect the temperature predictions. A summary plot including

points from each test is shown in Figure 64. A mean difference of 46°C was calculated. In

general, these predictions were better than those resulting from the Deal/Beyler Layer

Driven Model.

7.1.2 McCaffrey, Quintiere, and Harkleroad (MOH) Method

The motivation for a temperature correlation which could handle highly conductive

barriers resulted from the shortcomings of the relationship developed by McCaffrey et al.

They expressed the temperature rise using the following relationship [18]

AT cp0 -j" hckp v 1 (12)

This equation can be simplified further using ambient conditions and best fit values:

AT = 6.85 3 (13)

Their suggested values for h, are expressed by

hk may kpc, ,k (14)( )htt ma

However, this expression of the heat transfer coefficient is inappropriate for thermally

conductive boundaries. In previous work by Deal and Beyler [4], it was found that the

overall heat transfer coefficients used in the MQH Method differed by a factor of 2.5 from

those used in the Deal/Beyler Method. Consequently, the overall heat transfer coefficient

was calculated using Beyler's equation and then multiplied by 2.5.

The results from this analysis can be found in Appendix E. In most cases, these

predictions are somewhat higher than the data and the temperatures predicted with the
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Deal/Beyler Method. A comparison of these results with the actual temperatures is

presented in Figure 65. A mean difference of 47 CC was calculated for these data points.

7.1.3 Comparison of Temperature Prediction Methods

Based on these experimental results, each method of temperature prediction

investigated was successful. A table of the mean differences and standard deviations

calculated for the data points used in the summary plots is included below. The

Peatross/Beyler Method performs well for fires with known ventilation rates. Furthermore,

the MQH Method is more reliable than vent flow rate prediction methods in situations

where the vent flow rate is not known.

Table 6. Comparison of Temperature Prediction Methods

Ventilation Thermal Model Mean Standard
Type (Vent Flow Rate) (°C) Deviation

(°C)

Natural Peatross/Beyler 18 36
(measured)

Natural Peatross/Beyler 54 68
(Deal/Beyler Layer

Driven Method)

Natural Peatross/Beyler 46 41
(Mowrer Method)

Natural MQH Method 47 28
(none)

Forced Peatross/Beyler 30 29
(measured)

7.2 Barrier Temperature Predictions

In addition to upper layer temperature prediction, it is useful to predict barrier

temperatures since they are indicative of when a fire will spread to adjacent spaces.
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Equation 6 expresses this temperature. Figure 66 shows typical time histories for both

natural and forced ventilation tests. Measured barrier temperatures on both the interior and

exterior surfaces are included.

7.3 Compartment Fire Analysis

7.3.1 Natural Ventilation Tests

In all but two of these tests, it is indicated by the oxygen concentrations that

contaminated air was being entrained into the fire plume. The two fires which reported

ambient concentrations at the fire base had the two smallest fuel loads and the door vent.

While it is possible that exhaust gases were mixed with fresh air in the corridor before the

air flowed in through the vent, one would expect this effect to occur later in the fire after

most of the fresh air in the corridor has been entrained. This explanation is questionable

though since the entrained air was contaminated even in shorter fires. Given the

correlation of floor level oxygen concentration with the smaller vents, it is likely that the

gases are mixing within the compartment due to wall flows or vent mixing.

Window vent tests were least likely to have two-layer characteristics. These results

suggest that there is a significant amount of mixing occurring after air is entrained through

the window. As the air moves toward the fire base, it is mixed with exhaust gases so that

die temperature profile in the compartment becomes more uniform vertically. The oxygen

concentrations follow this same trend.

7.3.2 Forced Ventilation Tests

Forced ventilation tests generally exhibited one layer as well as well-stirred

characteristics as indicated by the vertical temperature and oxygen concentration profiles.
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These experiments can be compared to those conducted by Foote et al. at Lawrence

Livermore National Laboratory [19] In their tests which had forced ventilation from above,

they found that the temperature profiles were linear regardless of the ventilation rate.

Foote's results agree with these forced ventilation tests since temperature profiles were

linear, and the ventilation rate did not affect this linearity. Since they did not measure the

vertical oxygen concentration profile, they could not conclude whether their fires were well-

mixed. The gas species profile is an important consideration when modelling these fires.

Beyler assumed these fires were well-mixed and was able to successfully predict the

extinction time that Foote observed [3]. These tests show for the first time that linear

temperature profiles can occur in experiments in which gas concentrations are relatively

uniform over height thereby representing well-stirred conditions.

&0 CONCLUSIONS

A correlation (Eqs. 4 and 8) to predict the time to full room involvement suitable for

compartment fires with conductive barriers has been validated for both natural and forced

ventilation scenarios. Appropriate heat transfer coefficients for the hot and ambient sides

of the barrier are lower than those reported in Beyler's analysis [2]. New values were

determined experimentally as hb = 30 and h. = 20 W/m2 K These values correspond to an

overall coefficient starting at 30 and decaying to 12 W/m2K. Consequently, these changes

should be reflected in the SFSEM submodel for predicting FRI time.

Two vent flow rate prediction methods, the Deal/Beyler Layer Driven Method and

the Mowrer Method, were used to determine the exhaust rate to b- used in the

Peatross/Beyler temperature prediction equation. These methods were not extremely

reliable for predicting the vent flow rate; however, since the Peatross/Beyler correlation is

not very sensitive to changes in the exhaust rate, temperature predictions were good. The

McCaffrey, Harkleroad, and Quintiere Method was also used to predict upper layer

temperatures. Using Beyler's equation of the overall heat transfer coefficient multiplied by

a factor of 2.5, excellent results were obtained.
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In summary, the Peatross/Beyler Method is preferred in situations where the vent

flow rates are known. In cases where the vent flow rate is not known, the MQH Method

presents a better prediction of temperature than vent flow rate prediction techniques.
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APPENDIX A. Series 1 Test Results
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APPENDIX C. Series 1- Peatross/Beyler Temperature Prediction Method Results
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APPENDIX D. Series 2 - Peatross/Beyler Temperature Prediction Method Results
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APPENDIX E. Deal/Beyler Layer Driven Vent Flow Rate Prediction Method Results
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APPENDIX F. Mowrer Vent Flow Rate Prediction Method Results
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APPENDIX G. MQH Temperature Prediction Method Results
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APPENDIX H. Barrier Temperature Predictions Using Peatross/Beyler Method
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